Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Med Chem ; 66(4): 2744-2760, 2023 02 23.
Article in English | MEDLINE | ID: covidwho-2242001

ABSTRACT

Enveloped viruses depend on the host endoplasmic reticulum (ER) quality control (QC) machinery for proper glycoprotein folding. The endoplasmic reticulum quality control (ERQC) enzyme α-glucosidase I (α-GluI) is an attractive target for developing broad-spectrum antivirals. We synthesized 28 inhibitors designed to interact with all four subsites of the α-GluI active site. These inhibitors are derivatives of the iminosugars 1-deoxynojirimycin (1-DNJ) and valiolamine. Crystal structures of ER α-GluI bound to 25 1-DNJ and three valiolamine derivatives revealed the basis for inhibitory potency. We established the structure-activity relationship (SAR) and used the Site Identification by Ligand Competitive Saturation (SILCS) method to develop a model for predicting α-GluI inhibition. We screened the compounds against SARS-CoV-2 in vitro to identify those with greater antiviral activity than the benchmark α-glucosidase inhibitor UV-4. These host-targeting compounds are candidates for investigation in animal models of SARS-CoV-2 and for testing against other viruses that rely on ERQC for correct glycoprotein folding.


Subject(s)
1-Deoxynojirimycin , Antiviral Agents , COVID-19 , Glycoside Hydrolase Inhibitors , alpha-Glucosidases , Animals , 1-Deoxynojirimycin/chemistry , 1-Deoxynojirimycin/pharmacology , alpha-Glucosidases/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Endoplasmic Reticulum/enzymology , Glycoproteins , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , SARS-CoV-2/metabolism , Quantitative Structure-Activity Relationship
2.
J Med Chem ; 64(24): 18010-18024, 2021 12 23.
Article in English | MEDLINE | ID: covidwho-1616926

ABSTRACT

Most enveloped viruses rely on the host cell endoplasmic reticulum (ER) quality control (QC) machinery for proper folding of glycoproteins. The key ER α-glucosidases (α-Glu) I and II of the ERQC machinery are attractive targets for developing broad-spectrum antivirals. Iminosugars based on deoxynojirimycin have been extensively studied as ER α-glucosidase inhibitors; however, other glycomimetic compounds are less established. Accordingly, we synthesized a series of N-substituted derivatives of valiolamine, the iminosugar scaffold of type 2 diabetes drug voglibose. To understand the basis for up to 100,000-fold improved inhibitory potency, we determined high-resolution crystal structures of mouse ER α-GluII in complex with valiolamine and 10 derivatives. The structures revealed extensive interactions with all four α-GluII subsites. We further showed that N-substituted valiolamines were active against dengue virus and SARS-CoV-2 in vitro. This study introduces valiolamine-based inhibitors of the ERQC machinery as candidates for developing potential broad-spectrum therapeutics against the existing and emerging viruses.


Subject(s)
Antiviral Agents/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Imino Sugars/pharmacology , Inositol/analogs & derivatives , alpha-Glucosidases/metabolism , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Chlorocebus aethiops , Crystallography, X-Ray , Dengue Virus/drug effects , Endoplasmic Reticulum/enzymology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/metabolism , Humans , Imino Sugars/chemical synthesis , Imino Sugars/metabolism , Inositol/chemical synthesis , Inositol/metabolism , Inositol/pharmacology , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Protein Binding , SARS-CoV-2/drug effects , Vero Cells , alpha-Glucosidases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL